Observation of Four-Coordinate Aluminum Oxynitride ($AIO_{4-x}N_x$) Environments in **AlON Solids by MAS 27Al NMR at 14 T**

John J. Fitzgerald,* Scott D. Kohl, and Gilbert0 Piedra

> *Department of Chemistry South Dakota State University Brookings, South Dakota 57007*

Steven F. Dec and Gary E. Maciel*

Department of Chemistry Colorado State University Fort Collins, Colorado 80523

Received August 2, 1994

The use of isotropic chemical shifts from magic-angle spinning (MAS) *27Al* NMR spectra to characterize the local first- and second-coordination spheres of aluminum atoms in a wide range of amorphous and polycrystalline aluminum-oxygen compounds has been extensively investigated.¹⁻²¹ Muller et al.¹ first showed that ²⁷Al NMR exhibits resonances with isotropic **27Al** chemical shifts that are dependent upon the *Al-0* coordination number, with chemical shifts for local six-coordinate *AlO6* units occurring in the 0-9 ppm region (relative to $Al(H₂O)₆³⁺$ ion) and four-coordinate $AlO₄$ units in the 55-80 ppm range. Subsequently, **27Al** NMR studies of materials containing 5 -coordinate $AIO₅$ sites (e.g., barium aluminum glycolate, andalusite, and the dehydroxylated form of the minerals, kaolinite, and pyrophyllite) have shown NMR peaks with isotropic shifts from 30 to 40 $ppm.$ ^{11,15-18} These studies and others have defined the empirical *27Al* chemical shift ranges for **4-, 5-,** and

- (1) Muller, D.; Gessner, W.; Behrens, H. J.; Scheler, G. *Chem. Phys. Lett.* **1981, 79, 59.**
- **(2)** Mastikhin, V. M.; Krivoruchko, 0. P.; Zolotovskii, B. P.; Buy anov, R. A. *React. Catal. Lett.* **1981**, *18* (1), 117.

(3) Kotsarenko, N. S.; Mastikhin, V. M.; Mudrakovskii, I. L.;
- Shmachkova. **V.** P. *React. Kinet. Catal. Lett.* **1986. 30 (2). 375.**
- **(4)** Kunwar, **A.** C.; Thompson, **A.** R.; Gutowsky; H. S.; 'Oldfield, E. *J. Magn. Reson.* **1984,** *60,* **467.**
- *(5)* Villa, M.; Bjorkstam, J. L. *J. Magn. Reson.* **l98S, 51, 349. (6)** John, **C. S.;** Alma, N. C. M.; Hays, G. R. *Appl. Catal.* **l98S,** *6,*
- **044 541. (7)** Lippmaa, L.; Samoson, **A.;** Magi, M. *J. Am. Chem.* SOC. **1986,**
- **108. 1730.**
- **(8)** Fyfe, C. **A,;** Gobbi, G. C.; Hartman, J. S.; Klinowski, J.; Thomas, J. M. *J. Phys. Chem.* **1982, 86, 1247.**
- **(9)** Morris, H. D.; Ellis, P. D. *J. Am. Chem. SOC.* **1989, 111, 6045. (10)** Huggins, B. **A.;** Ellis, P. D. *J.Am. Chem.* **SOC. 1992,114,2098. (11)** Lambert, S. F.; Millman, W. S.; Fripiat, J. J. *J. Am. Chem.*
- *SOC.* **1989,111, 3517. (12)** Kinsey, **R. A.;** Kirkpatrick, R. J.; Hower, J.; Smith, K. **A.;**
- Oldfield, E. *Am. Mineral.* **1985, 70, 537. (13)** Smith, K. **A.;** Kirkpatrick, R. J.; Oldfield, E.; Henderson, D.
- M. *Am. Mineral.* **1983, 68, 1206. (14)** Kirkpatrick, R. J.; Smith, **K.A.;** Schramm, S.;Turner, G.;Yang,
- W. H. *Annu. Rev. Earth Planet. Sci.* **1985, 13, 29. (15)** Cruickshank, M. C.; Dent Glasser, L. *S.Acta Crystallogr.* **1986,**
- **C41, 1014.**
- **I. J.** F. *J. Chem. SOC., Chem. Commun.* **1986, 23. (16)** Cruickshank, M. C.; Dent Glasser, L. S.; Bani, **A.** I.; Poplett,
- **6158. (17)** Alemany, L. B.; Kirker, G. W. *J. Am. Chem. SOC.* **1986, 108,** .~.~
- (18) Dec, S. F.; Fitzgerald, J. J.; Frye, J. S.; Shatlock, M. P.; Maciel, G. E. *J. Mugn. Reson.* **1991,93, 403.**
- **(19)** Fitzgerald, J. J.; Dec, S. F.; Hamza, **A.** I. *Am. Mineral.* **1989, 74, 1405.**
- **(20)** Muller, D.; Gessner, W.; Samoson, **A.;** Lippmaa, E.; Scheler,

G. J. *Chem. SOC., Dalton Trans.* **1986, 1277.** (21) Dec, S. F.; Maciel, G. E.; Fitzgerald, J. J. *J. Am. Chem. SOC.* **1990,112,9069.**

6-coordinate aluminum-oxygen sites based on an extensive range of aluminum systems, including oxides, aluminosilicates, minerals, and zeolites. $1-13,15-18$ The use of **27AI** chemical shift data to correlate the local second-nearest-neighbor chemical environments in various types of condensed 4-coordinate Al(OX)₄ units with neighboring XO_4 tetrahedra $(X = Si, P)$ and neighboring XO_6 (X = Al) octahedra have also been examined, as summarized by Muller et a1.20 Thus, **MAS 27Al** NMR also provides a sensitive means to discriminate and assign subtle (i.e., second nearest neighbor) effects in many aluminum-oxygen systems. However, MAS **27Al** NMR spectra of aluminates containing variable numbers of nearest-neighbor NO4 tetrahedra, denoted $Qⁿ$, show that such variations do not significantly influence the range of **27Al** chemical shifts (76-85 ppm).^{20,21}

An empirical relationship between **27Al** chemical shifts and the local aluminum coordination environments in solids has recently been reported for four-coordinate AIN4 sites, based on MAS *27Al* NMR studies of aluminum-nitrogen compounds such as AlN, β' -SiAlON, β'' -SiAlON, and AlON ceramics and powders. $22-25$ Butler et al.23 measured at 9.4 T the **27Al** chemical shifts of the AlN4 tetrahedra (110 ppm) in aluminum nitride and the AlN₄ tetrahedra (110 ppm) and $AIO₆$ octahedra (3 ppm) in Si-Al-O-N phases. Hayashi et al.²² subsequently assigned the 100 ppm signal of hydrolyzed AN powders to AW4 moieties in unreacted *AW.* Dupree and co-workers²⁴ reported at 8.5 T MAS ²⁷Al NMR studies for AIO_6 (12 ppm), AIO_4 (65 ppm), and AIN_4 (114 ppm) environments in AlON and $AIO₆$ (4 ppm), $AIO₄$ (66 ppm), and AlN₄ (104-109 ppm) sites in various β' -SiAlONs and β'' -SiAlONs (Mg₅AlSi₃O₁₁N). These studies have suggested that MAS *27Al* NMR may be used to distinguish local aluminum oxynitride environments for sites of the $AlO_{4-x}N_x$ type in SiAlON materials, although the magnetic field strengths used were insufficient to permit the complete observation or clear resolution of such resonances, presumably due to the large second-order quadrupole contributions to the *27Al* line widths at 8.5 T. In addition, these measurements were limited to the observation of only 65% of the total aluminum in AlN, **15%** in AlON, and even less for various SiAlON materials. In addition to the work of Butler et **al.23** and Dupree et al., $24,31$ a recent report by Smith has examined the *27Al* NMR of various SiAlONs at 11.7 T.32 That report will be discussed in more detail in relationship to the NMR results reported here.

(22) Hayashi, S.; Hayamizu, K.; Yamamoto, 0. *Bull. Chem. SOC. Jpn.* **1987,** *60,* **761.**

- **(23)** Butler, **N.** D.; Dupree, R.; Lewis, M. H. *J. Mater. Sci. Lett.* **1984, 3, 469.**
- **(24)** Dupree, **R.;** Lewis, M. H.; Smith, M. E. *J. Appl. Crystallogr.* **1988,21, 112.**

(25) Haase, J.; Freude, D.; Frohlich, T.; Himpel, *G.;* Kerbe, F.; Lippmaa, E.; Pfeifer, H.; Saw, P.; Schafer, H.; Seiffert, B. *Chem. Phys. Lett.* **1989, 156, 328.**

- **(26)** McCauley, J. W. *J. Am. Ceram.* SOC. **1978,** *61,* **372.**
- **(27)** McCauley, J. **W.;** Corbin, **N.** D. *J. Am. Ceram. SOC.* **1979,62,**
- **476. (28)** Harnett, T. M.; Maguire, E. **A.;** Gentilman, R. L.; Corbin, **N. (29)** Graham, E. K.; Munly, W. C.; McCauley, J. W.; Corbin, N. D. D.; McCauley, J. W. *Ceram. Eng. Sci. Proc.* **1982,3, 67.**
- *J. Am. Ceram. SOC.* **1988, 71, 807.**
- **(30)** Corbin, N. D. U.S. Army Materials Technology Laboratory, MLTMS **87-3,** Watertown, MA, **1987.**
- **(31)** Dupree, R.; Lewis, M. H.; Smith, M. E. *J.Am. Chem. Soc.* **1989, 111, 5125.**
	- **(32)** Smith, M. E. *J. Phys. Chem.* **1992,96, 1444.**

^{*} To whom correspondence should be addressed.

In this communication, we report the first experimental observation of resolvable **MAS** 27Al NMR resonances, measured at 14 T, in the spectral region between the chemical shifts of resonances for four-coordinate AlO4 (ca. 66 ppm) and $AlN₄$ (114 ppm) sites in synthesized AlON ceramic powdered materials. $26-30$ The observed **27Al** NMR resonances are empirically assigned to fourcoordinate aluminum oxynitride $(AlO_{4-x}N_x)$ environments, thus providing experimental evidence for a relationship between the 27Al chemical shift and chemical environment over a range of local $AIO_{4-x}N_x$ environments in these ceramic powders. 27 Al spin-counting measurements carried out on the 35.7 mol % AlN sample show that 98.9% of the 27Al spins were observed based on comparison of the integrated intensity of the spectral peaks of a weighed sample with the single peak for an alum (potassium aluminum sulfate dodecahydrate, **K.4l(S04)2-12H20)** sample.

The AlON ceramic powders were prepared by pressureless sintering of AlN and α -Al₂O₃ at various AlN/ *A1203* reaction ratios from 16.7 to 88 mol % AlN. The reaction mixtures were slurried in *n*-butanol under N_2 flow, and then prereacted at <20 mTorr on a vacuum line for 1 h at 110 \degree C and at 300 \degree C for 2 h. The prereacted samples were sintered for four hours at 1200 °C and for 1 h at 1800 °C under 2 psig N_2 flow in a Centorr M60 furnace. Solid-state **27Al** MAS NMR spectra were obtained at 156.4 **MHz** on a Bruker AM-600 NMR spectrometer using a "home-built" MAS probe, with $18-20$ kHz sample spinning. The ²⁷Al NMR chemical shifts were externally referenced to a 1 M $AlCl₃·6H₂O$ solution assigned as 0.0 ppm.

The 27Al **MAS** NMR spectra of AlON ceramic powders of different AlN/Al_2O_3 reaction ratios from 16.7 to 88 mol % AlN are shown in Figure 1. In addition, the reference 27Al NMR spectra of the reactants, *AlN,* and a low surface area Al_2O_3 , are also shown. The 16.7% AlON sample displays 27Al NMR peaks at 65 and 14 ppm attributed to $AIO₄$ and $AIO₆$ sites, respectively. The 14 ppm peak is asigned to 6-coordinate $AIO₆$ sites of unreacted A1203 (Figure **la),** while the 65 ppm peak is due to AlO_4 sites similar to those in γ - Al_2O_3 . An AlN_4 peak at 114 ppm analogous to the spectrum of AN (Figure **lg)** is not observed, since AlN is completely absent in this region of the phase diagram.²⁷ The 35.7% sample shows four resolved peaks: an intense asymmetric peak skewed to the high-shielding side at 14.5 ppm, a broad resonance at 66.3 ppm, a broad partially resolved resonance at 106 ppm and a weak-intensity peak at 114 ppm. This sample corresponds to the reaction ratio of AlN/Al₂O₃ needed to produce γ -AlON.²⁷ Comparison of this spectrum, attributed to γ -AION, with the ²⁷Al NMR spectrum of γ -alumina (not shown; peaks at 9.4 and 66.6 ppm) indicates that these materials both show peaks in the $10-14$ ppm region and in the $66-67$ ppm region, probably due to $AIO₆$ and $AIO₄$ aluminum sites, respectively.⁸ These two spectral features are common for spinel-type γ -alumina samples, although the octahedraYtetrahedra1 ratios of the peak intensities are different, i.e., 3.27 for γ -AlON and 2.52 for γ -alumina for the conditions under which these spectra were obtained. In addition to these two peaks, the **27Al** NMR spectra of the AlON prepared at 35.7 mol % AlN also shows a peak at $114-117$ ppm that is assigned to the AlN4 sites in unreacted AlN, and a resolved, low-

Figure 1. 27Al MAS NMR at 14 T of various AlON powders prepared at different AlN/Al₂O₃ reaction ratios. Mole % AlN: (a) 0.0, **(b)** 16.7, *(c)* 35.7, (d) **50.0,** (e) 83.0, **(D** 88.0, and **(g)** 100.0 (* denotes spinning sidebands).

intensity peak skewed to the high-shielding side of the 114-117 ppm peak at 106 ppm. XRD analysis of the 35.7% AlON sample shows a mean AlN content of 3.6%, which supports the assignment of the 114 ppm peak to AlN4 sites of unreacted AlN in the 35.7% AlON (compared to 4.4% peak area for the 114 ppm NMR peak, Figure 1). The 106 ppm peak is in a chemical shift region between that observed for local $AIO₄$ and $AIN₄$ aluminum atom environments and is tentatively assigned to $AlN₃O$ sites. This chemical unit may be a structural unit of γ -AlON or an O₃Al-O-AlN₃ interfacial unit formed between reacted aluminum nitride and aluminum oxide particles.

The 50.0 and 83.0 mol % AlON samples (excess AlN region of the phase diagram²⁷) also yield ²⁷Al NMR peaks at 115-117,106,67-68, and 14 ppm, which are assigned to AlN₄, AlN₃O, AlO₄, and AlO₆, respectively. The 88 mol % sample also shows peaks at 115,106, and 14 ppm attributed to $AlN₄$, $AlN₃O$, and $AlO₆$ sites, respectively, but no 67-68 ppm peak; instead, a peak at 77 ppm is seen that is assigned to $AlNO₃$ sites. In addition, the various AlON samples all show some resonance intensity in the 10 to -10 ppm region that may be due to the effects of second-nearest-neighbor

Figure 2. *27Al* MAS NMR results at **14** T **for AlON** powders prepared at **50** mol % AlN: (a) experimental spectrum, (b) simulated spectrum, and (c) peak components from deconvolution analysis.

AlO4 tetrahedra on the chemical shifts of the *AlO6* octahedra.

A deconvolution analysis of the experimental *27Al* NMR spectrum of the **50** mol % AlON sample is shown in Figure 2. The simulated spectrum (Figure 2b) obtained from deconvolution analysis using Gaussian peak components shows two peaks (Figure 2c) with **27Al** NMR chemical shifts of 106 and 96 ppm located between the 114 (AlN4) and 66 ppm *(Al04)* resonances. These two NMR peaks are empirically assigned to local four-coordinate AlN_3O and either AlN_2O_2 or AlNO_3 chemical environments. The peaks denoted "?" are not spinning sidebands since they are not shifted in the NMR spectrum with changes in the spinning speed; but rather, their resonance intensities and peak positions are similar to those observed for similar peaks in the ²⁷Al NMR spectrum of γ -alumina. These resonances are probably due to octahedral $AIO₆$ sites with secondnearest-neighbor aluminum atoms that may be sixcoordinate, or more likely are four-coordinate, consistent with the spinel lattice structure of γ -alumina materials. The use of Gaussian deconvolution analysis instead of second-order powder patterns is consistent with the interpretation that chemical shift dispersion, not secondorder quadrupolar effects, is the dominant line-broadening mechanism for these AlON measurements at 14 T. The success of this type of simulation (Figure 2) implies that this interpretation may be the correct one.

Table 1. Tentative MAS *21A1* **NMR Structural Assignments**

²⁷ Al chemical shift, ppm	structural unit	aluminum materials
14 66 96 96 106 $114 - 117$	AIO ₆ AIO ₄ AlNO ₃ AlN ₂ O ₂ AlN_3O AlN4	Al_2O_3 and γ -AION ν -AlON AlON or Al_2O_3/AlN composite AlON or $\text{Al}_2\text{O}_3/\text{Al}$ N composite AION or $\text{Al}_2\text{O}_3/\text{Al}$ N composite AIN

A summary of the tentative *27Al* NMR spectral assignments is given in Table l.7 The results of the **27Al** chemical shift assignments for the AlON system of Table 1 differ from the work of Smith³² on the SiAlON system in several aspects. First, while the assignments of the chemical shifts for the AlO4 and *AlO6* sites are nearly identical, the resolved peak at 106 ppm assigned to AN30 sites in this work at 14 T differs from the 93 ppm $(AlN₃O)$ and 106 ppm $(AlN₄$ of AlN) peak assignments of Smith³² at 11.7 T. The agreement between the **XRD** and NMR AlN content of the 35.7% AlON support our assignment of the AlN4 resonance between 114 and 117 ppm to $AlN₄$ sites of AlN, while our assignment of the resolved 106 ppm peak to AlN_3O sites in γ -AlON may be contrasted with the decreased peak resolution of the 11.7 T spectral peaks observed by Smith.32 Second, the 96 ppm peak in our work is assigned to a mixture of $AlN₂O₂$ and $AlNO₃$ sites in γ -AlON that are not resolved, presumably due to chemical shift dispersion effects, while the work of Smith³² assigns shoulder resonances of poorly resolved spectra of SiAlONs materials to AlN_2O_2 (at 89 ppm) and AlO_3N (at 75 ppm) sites. Differences in these assignments are probably a consequence of the field differences in the measurements as well as chemical shift dispersion effects that would be more prominent in SiAlON materials (second-nearest-neighbor Si and Al atoms) relative to the AlON materials (only second-nearestneighbor *Al* atoms).

The results of these at 14 T **27Al** NMR investigations indicate that sufficient spectral resolution can be obtained via MAS at this field to distinguish and assign four-coordinate aluminum oxynitride moieties in AlON materials. Further studies of these systems are in progress to develop a more detailed chemical understanding of the structural chemistry and **MAS 27Al** NMR characteristics of these unique ceramic materials.

Acknowledgment. The authors acknowledge partial support by an REU supplement to National Science Foundation Grant No. RII-8902066 and by NSF Grant No. CHE-9021003 and use of the Colorado State University NMR Center.